Saturday, January 7, 2012

amyloid beta peptides | What is amyloid beta peptides|Papers on amyloid beta peptides |Research on amyloid beta peptides | Publications on amyloid b


1.

Fluorinated and iodinated (Z)-2-(4-(2-fluoroethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one.

Authors

Shan L.

Source

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.
2011 Nov 30 [updated 2011 Dec 28].

Excerpt

Fluorinated and iodinated (Z)-2-(4-(2-fluoroethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one (compound 3), abbreviated as [18F]3 and [125I]3, respectively, is an aurone derivative synthesized by Watanabe et al. for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) of Alzheimer’s disease (AD) by targeting β-amyloid (Aβ) plaques (1). AD is characterized in pathology by the presence of extracellular Aβ plaques, intraneuronal neurofibrillary tangles, and neuronal loss in the cerebral cortex (2, 3). Of them, Aβ deposit is the earliest neuropathological marker and is relatively specific to AD and closely related disorders. Aβ plaques are composed of abnormal paired helical filaments 5–10 nm in size. These filaments are largely made of insoluble Aβ peptides that are 40 or 42 amino acids in length (4). In recent years, molecular imaging by targeting the extracellular Aβ has been intensively investigated in attempts to detect early AD, assess Aβ content in vivo, determine the timing of anti-plaque therapy, and evaluate the therapeutic efficacy (4). Radiolabeled Aβ40 peptides were tested first, but they showed poor penetration ability to cross the blood–brain barrier (BBB) (4). Based on the fact that Aβ can be specifically stained in vitro with dyes of Congo red, chrysamine G, and thioflavin-T, an effort was made to develop imaging agents with these dyes. This effort, however, was in general unsuccessful because the bulky ionic groups of heteroatoms in these dyes prevent them from crossing the BBB (2). Importantly, a large class of derivatives (e.g., aminonaphthalenes, benzothiazoles, stilbenes, and imidazopyridines) was synthesized with these dyes as templates (4). Clinical and preclinical studies have shown that these derivatives not only possess a high binding affinity with Aβ plaques as their parent compounds, but also exhibit good penetration ability through the BBB and rapid washout from brain. Ono et al. first synthesized a class of radioiodinated flavone derivatives that present a high binding affinity with Aβ plaques and good penetration ability through the BBB (5). However, these flavone derivatives display poor clearance from the brain, which leads to a high brain background. The investigators then explored another class of flavonoids with aurone as the core structure (6, 7). Aurone is a heterocyclic chemical compound that contains a benzofuran element associated with a benzylidene linked in position 2 and a chalcone-like group being closed into a five-member ring. The aurone derivatives possess a nucleophilic group (NH2, NHMe, or NMe2) at the 4' position and a radioiodine at the 5 position. Although these aurone derivatives exhibit a strong binding affinity with Aβ (inhibition constant (K i) = 1.2–6.8 nM), high penetration ability through the BBB (1.9%−4.6% injected dose per gram tissue (ID/g) at 2 min), and a fast washout from the brain (0.3%−0.5% ID/g at 30 min), the pharmacokinetics of these compounds are less favorable for brain imaging than the pharmacokinetics of the agent [123I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2]pyridine), which is the only SPECT agent to be tested in humans to date (1, 8, 9). The investigators also modified the flavone and aurone derivatives by pegylating them with 1–3 units of ethylene glycol at the 4' position or by conjugating them with the chelating agent bis-amino-bis-thiol (BAT) (7). Favorable pharmacokinetics for brain imaging was observed for the pegylated derivatives ([18F]8(a–c)) but not for the BAT-chelated derivatives ([99mTc]BAT-FL and [99mTc]BAT-AR) (6, 7). This series of chapters summarizes the data obtained with flavone and aurone derivatives, including [125I]15, [125I]9, [125I]14, [125I]16, [125I]17, [99mTc]BAT-FL, [99mTc]BAT-AR, [18F]8(a-c), [125I]3, and [18F]3 (1, 6-8). This chapter presents the data obtained with [125I]3 and [18F]3 (1).

PMID:
22220320
[PubMed]
Books & DocumentsFree full text
2.

Radioiodinated (Z)-2-(4-(2-hydroxyethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one.

Authors

Shan L.

Source

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.
2011 Nov 30 [updated 2011 Dec 28].

Excerpt

Radioiodinated (Z)-2-(4-(2-hydroxyethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one (compound 15), abbreviated as [125I]15, is an aurone derivative synthesized by Maya et al. for single-photon emission computed tomography(SPECT) of Alzheimer’s disease (AD) by targeting β-amyloid (Aβ) (1). The other four aurone derivatives include radioiodinated (Z)-2-(4-methoxybenzylidene)-5-iodobenzofuran-3(2H)-one (compound 9), (Z)-2-(4-hydroxybenzylidene)-5-iodobenzofuran-3(2H)-one (compound 14), (Z)-2-(4-(2-(2-hydroxyethoxy)ethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one (compound 16), and (Z)-2-(4-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)benzylidene)-5-iodobenzofuran-3(2H)-one (compound 17), which are abbreviated as [125I]9, [125I]14, [125I]16, and [125I]17, respectively. AD is characterized in pathology by the presence of extracellular Aβ plaques, intraneuronal neurofibrillary tangles, and neuronal loss in the cerebral cortex (2, 3). Of them, Aβ deposit is the earliest neuropathological marker and is relatively specific to AD and closely related disorders. Aβ plaques are composed of abnormal paired helical filaments 5–10 nm in size. These filaments are largely made of insoluble Aβ peptides that are 40 or 42 amino acids in length (4). In recent years, molecular imaging by targeting the extracellular Aβ has been intensively investigated in attempts to detect early AD, assess Aβ content in vivo, determine the timing of anti-plaque therapy, and evaluate the therapeutic efficacy (4). Radiolabeled Aβ40 peptides were tested first, but they showed poor penetration ability to cross the blood–brain barrier (BBB) (4). Based on the fact that Aβ can be specifically stained in vitro with dyes of Congo red, chrysamine G, and thioflavin-T, an effort was made to develop imaging agents with these dyes. This effort, however, was in general unsuccessful because the bulky ionic groups of heteroatoms in these dyes prevent them from crossing the BBB (2). Importantly, a large class of derivatives (e.g., aminonaphthalenes, benzothiazoles, stilbenes, and imidazopyridines) was synthesized with these dyes as templates (4). Clinical and preclinical studies have shown that these derivatives not only possess a high binding affinity with Aβ plaques as their parent compounds, but also exhibit good penetration ability through the BBB and rapid washout from brain with low to no plaque deposits. Ono et al. first synthesized a class of radioiodinated flavone derivatives that present a high binding affinity with Aβ plaques and good penetration ability through the BBB (5). However, these flavone derivatives display poor clearance from the brain, which leads to a high brain background. The investigators then explored another class of flavonoids with aurone as the core structure (6, 7). Aurone is a heterocyclic chemical compound that contains a benzofuran element associated with a benzylidene linked in position 2 and a chalcone-like group being closed into a five-member ring. The aurone derivatives possess a nucleophilic group (NH2, NHMe, or NMe2) at the 4' position and a radioiodine at the 5 position. Although these aurone derivatives exhibit a strong binding affinity with Aβ (inhibition constant (K i) = 1.2–6.8 nM), high penetration ability through the BBB (1.9%−4.6% injected dose per gram tissue (ID/g) at 2 min), and a fast washout from the brain (0.3%−0.5% ID/g at 30 min), the pharmacokinetics of these compounds are less favorable for brain imaging than the pharmacokinetics of the agent [123I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2]pyridine), which is the only SPECT agent to be tested in humans to date (1, 8, 9). The investigators also modified the flavone and aurone derivatives by pegylating them with 1–3 units of ethylene glycol at the 4' position or by conjugating them with the chelating agent bis-amino-bis-thiol (BAT) (7). Favorable pharmacokinetics for brain imaging was observed for the pegylated derivatives ([18F]8(a–c)) but not for the BAT-chelated derivatives ([99mTc]BAT-FL and [99mTc]BAT-AR) (6, 7). This series of chapters summarizes the data obtained with flavone and aurone derivatives, including [125I]15, [125I]9, [125I]14, [125I]16, [125I]17, [99mTc]BAT-FL, [99mTc]BAT-AR, [18F]8(a–c), [125I]3, and [18F]3 (1, 6-8). This chapter presents the data obtained with [125I]15, [125I]9, [125I]14, [125I]16, and [125I]17 (1).

PMID:
22220319
[PubMed]
Books & DocumentsFree full text
3.

99mTc-Bis-amino-bis-thiol-conjugated 6-(3-bromopropoxy)-2-(4-(dimethylamino)phenyl)-4H-chromen-4-one and (Z)-5-(3-bromopropoxy)-2-(4-(dimethylamino)benzylidene)benzofuran-3(2H)-one.

Authors

Shan L.

Source

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.
2011 Nov 30 [updated 2011 Dec 28].

Excerpt

99mTc-Bis-amino-bis-thiol (BAT)-conjugated 6-(3-bromopropoxy)-2-(4-(dimethylamino)phenyl)-4H-chromen-4-one and (Z)-5-(3-bromopropoxy)-2-(4-(dimethylamino)benzylidene)benzofuran-3(2H)-one, abbreviated as [99mTc]BAT-FL and [99mTc]BAT-AR, respectively, are flavone and aurone derivatives synthesized by Ono et al. for single-photon emission computed tomography (SPECT) of Alzheimer’s disease (AD) by targeting β-amyloid (Aβ) (1). AD is characterized in pathology by the presence of extracellular Aβ plaques, intraneuronal neurofibrillary tangles, and neuronal loss in the cerebral cortex (2, 3). Of them, Aβ deposit is the earliest neuropathological marker and is relatively specific to AD and closely related disorders. Aβ plaques are composed of abnormal paired helical filaments 5–10 nm in size. These filaments are largely made of insoluble Aβ peptides that are 40 or 42 amino acids in length (4). In recent years, molecular imaging by targeting the extracellular Aβ has been intensively investigated in attempts to detect early AD, assess Aβ content in vivo, determine the timing of anti-plaque therapy, and evaluate the therapeutic efficacy (4). Radiolabeled Aβ40 peptides were tested first, but they showed poor penetration ability to cross the blood–brain barrier (BBB) (4). Based on the fact that Aβ can be specifically stained in vitro with dyes of Congo red, chrysamine G, and thioflavin-T, an effort was made to develop imaging agents with these dyes. This effort, however, was in general unsuccessful because the bulky ionic groups of heteroatoms in these dyes prevent them from crossing the BBB (2). Importantly, a large class of derivatives (e.g., aminonaphthalenes, benzothiazoles, stilbenes, and imidazopyridines) was synthesized with these dyes as templates (4). Clinical and preclinical studies have shown that these derivatives not only possess a high binding affinity with Aβ plaques as their parent compounds, but also exhibit good penetration ability through the BBB and rapid washout from brain with low to no plaque deposits. Ono et al. first synthesized a class of radioiodinated flavone derivatives that present a high binding affinity with Aβ plaques and good penetration ability through the BBB (5). However, these flavone derivatives display poor clearance from the brain, which leads to a high brain background. The investigators then explored another class of flavonoids with aurone as the core structure (1, 6). Aurone is a heterocyclic chemical compound that contains a benzofuran element associated with a benzylidene linked in position 2 and a chalcone-like group closed into a five-member ring. The aurone derivatives possess a nucleophilic group (NH2, NHMe, or NMe2) at the 4' position and a radioiodine at the 5 position. Although these aurone derivatives exhibit a strong binding affinity with Aβ (inhibition constant (K i) = 1.2–6.8 nM), high penetration ability through the BBB (1.9%−4.6% injected dose per gram tissue (ID/g) at 2 min), and a fast washout from the brain (0.3%−0.5% ID/g at 30 min), the pharmacokinetics of these compounds are less favorable for brain imaging than the pharmacokinetics of the agent [123I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2]pyridine), which is the only SPECT agent to be tested in humans to date (7-9). The investigators also modified the flavone and aurone derivatives by pegylating them with 1–3 units of ethylene glycol at the 4' position or by conjugating them with the chelating agent bis-amino-bis-thiol (BAT). Favorable pharmacokinetics for brain imaging was observed for the pegylated derivatives ([18F]8(a–c)) but not for the BAT-chelated derivatives ([99mTc]BAT-FL and [99mTc]BAT-AR) (1, 6). This series of chapters summarizes the data obtained with flavone and aurone derivatives, including [125I]15, [125I]9, [125I]14, [125I]16, [125I]17, [99mTc]BAT-FL, [99mTc]BAT-AR, [18F]8(a–c), [125I]3, and [18F]3 (1, 6-8). This chapter presents the data obtained with [99mTc]BAT-FL and [99mTc]BAT-AR (1).

PMID:
22220317
[PubMed]
Books & DocumentsFree full text
4.

18F-Labeled fluoropegylated 6-fluoroethoxy-4'-dimethylaminoflavone, 6-(2-(2-fluoro-ethoxy)-ethoxy)-4'-dimethylaminoflavone, and 6-(2-(2-(2-fluoro-ethoxy)-ethoxy)ethoxy)-4'-dimethylaminoflavone.

Authors

Shan L.

Source

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2011.
2011 Nov 30 [updated 2011 Dec 28].

Excerpt

18F-Labeled fluoropegylated 6-fluoroethoxy-4'-dimethylaminoflavone (compound 8a), 6-(2-(2-fluoro-ethoxy)-ethoxy)-4'-dimethylaminoflavone (compound 8b), and 6-(2-(2-(2-fluoro-ethoxy)-ethoxy)ethoxy)-4'-dimethylaminoflavone (compound 8c), abbreviated as [18F]8a, [18F]8b, and [18F]8c, respectively, are flavone derivatives synthesized by Ono et al. for positron emission tomography (PET) of Alzheimer’s disease (AD) by targeting β-amyloid (Aβ) (1). AD is characterized in pathology by the presence of extracellular Aβ plaques, intraneuronal neurofibrillary tangles, and neuronal loss in the cerebral cortex (2, 3). Of them, Aβ deposit is the earliest neuropathological marker and is relatively specific to AD and closely related disorders. Aβ plaques are composed of abnormal paired helical filaments 5–10 nm in size. These filaments are largely made of insoluble Aβ peptides that are 40 or 42 amino acids in length (4). In recent years, molecular imaging by targeting the extracellular Aβ has been intensively investigated in attempts to detect early AD, assess Aβ content in vivo, determine the timing of anti-plaque therapy, and evaluate the therapeutic efficacy (4). Radiolabeled Aβ40 peptides were tested first, but they showed poor penetration ability to cross the blood–brain barrier (BBB) (4). Based on the fact that Aβ can be specifically stained in vitro with dyes of Congo red, chrysamine G, and thioflavin-T, an effort was made to develop imaging agents with these dyes. This effort, however, was in general unsuccessful because the bulky ionic groups of heteroatoms in these dyes prevent them from crossing the BBB (2). Importantly, a large class of derivatives (e.g., aminonaphthalenes, benzothiazoles, stilbenes, and imidazopyridines) was synthesized with these dyes as templates (4). Clinical and preclinical studies have shown that these derivatives not only possess a high binding affinity with Aβ plaques as their parent compounds, but also exhibit good penetration ability through the BBB and rapid washout from brain with low to no plaque deposits. Ono et al. first synthesized a class of radioiodinated flavone derivatives that present a high binding affinity with Aβ plaques and good penetration ability through the BBB (5). However, these flavone derivatives display poor clearance from the brain, which leads to a high brain background. The investigators then explored another class of flavonoids with aurone as the core structure (1, 6). Aurone is a heterocyclic chemical compound that contains a benzofuran element associated with a benzylidene linked in position 2 and a chalcone-like group being closed into a five-member ring. The aurone derivatives possess a nucleophilic group (NH2, NHMe, or NMe2) at the 4' position and a radioiodine at the 5 position. Although these aurone derivatives exhibit a strong binding affinity with Aβ (inhibition constant (K i) = 1.2–6.8 nM), high penetration ability through the BBB (1.9%−4.6% injected dose per gram tissue (ID/g) at 2 min), and a fast washout from the brain (0.3%−0.5% ID/g at 30 min), the pharmacokinetics of these compounds are less favorable for brain imaging than the pharmacokinetics of the agent [123I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2]pyridine), which is the only SPECT agent to be tested in humans to date (7-9). The investigators also modified the flavone and aurone derivatives by pegylating them with 1–3 units of ethylene glycol at the 4' position or by conjugating them with the chelating agent bis-amino-bis-thiol (BAT). Favorable pharmacokinetics for brain imaging was observed for the pegylated derivatives ([18F]8(a–c)) but not for the BAT-chelated derivatives ([99mTc]BAT-FL and [99mTc]BAT-AR) (1, 6). This series of chapters summarizes the data obtained with flavone and aurone derivatives, including [125I]15, [125I]9, [125I]14, [125I]16, [125I]17, [99mTc]BAT-FL, [99mTc]BAT-AR, [18F]8(a–c), [125I]3, and [18F]3 (1, 6-8). This chapter presents the data obtained with [18F]8(a–c) (1).

PMID:
22220313
[PubMed]
Books & DocumentsFree full text
5.
J Biol Chem. 2012 Jan 4. [Epub ahead of print]

Tannic Acid is a Natural β-secretase Inhibitor that Prevents Cognitive Impairment and Mitigates Alzheimer-like Pathology in Transgenic Mice.

Source

Saitama Medical Center and University, Japan;

Abstract

Amyloid precursor protein (APP) proteolysis is essential for production of amyloid-β (Aβ) peptides that form β-amyloidplaques in brains of Alzheimer disease (AD) patients. Recent focus has been directed toward a group of naturally-occurring anti-amyloidogenic polyphenols known as flavonoids. We orally administered the flavonoid tannic acid (TA) to the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) and evaluated cognitive function and AD-like pathology. Consumption of TA for 6 months prevented transgene-associated behavioral impairment including hyperactivity, decreased object recognition, and defective spatial reference memory, but did not alter non-transgenic mouse behavior. Accordingly, brain parenchymal and cerebral vascular β-amyloid deposits and abundance of various Aβ species including oligomers were mitigated in TA-treated PSAPP mice. These effects occurred with decreased cleavage of the β-carboxyl-terminal APP fragment, lowered soluble APP-β production, reduced β-site APP cleaving enzyme 1 protein stability and activity, and attenuated neuroinflammation. As in vitro validation, we treated well-characterized mutant human APP-overexpressing murine neuron-like cells with TA and found significantly reduced Aβ production associated with less amyloidogenic APP proteolysis. Taken together, these results raise the possibility that dietary supplementation with TA may be prophylactic for AD by inhibiting β-secretase activity and neuroinflammation and thereby mitigating AD pathology.

PMID:
22219198
[PubMed - as supplied by publisher]
6.
J Phys Chem B. 2012 Jan 4. [Epub ahead of print]

Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-D-Enantiomer of Alzheimer's β-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology.

Abstract

Alzheimer's disease (AD) is a protein misfolding disease characterized by a build-up of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization; or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L amino acid peptides, but not their D counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM) we imaged the structures of both D- and L enantiomers of the full length Aβ1-42 when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Earlier we have shown that D-Aβ1-42 channels conduct ions similarly to their L-counter parts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors.

PMID:
22217000
[PubMed - as supplied by publisher]
7.
Folia Neuropathol. 2011;49(4):295-300.

Immunodistribution of amyloid beta protein (Aβ) and advanced glycation end-product receptors (RAGE) in choroid plexus and ependyma of resuscitated patients.

Source

Prof. Danuta Maślińska, Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland, phone +48 22 608 65 02, fax +48 22 608 65 02, e-mail: maslinskad@cmdik.pan.pl.

Abstract

RAGE (receptor for advanced glycation end-products) participates in the influx transport of glycated Aβ (amyloid beta) from the blood to the brain. Because little is known of the RAGE operating in brain barriers such as those in the choroid plexus and ependyma, the aim of the present study was to examine the immunodistributions of RAGE and Aβ peptidesin the choroid plexus where the blood-cerebrospinal fluid barrier (B-CSF) is located, and in ependyma of the brain ventricles associated with functions of the cerebrospinal fluid-brain barrier (CSF-B). The study was performed on patients over 65 years successfully resuscitated after cardiac arrest with survival a few weeks. The control group consisted of age-matched individuals who were not resuscitated and died immediately after cardiac arrest. In resuscitated patients, but not in controls, RAGE receptors were localized in choroid plexus (CP) epithelial cells and in ependymal cells bordering the brain ventricles. These cells form the B-CSF and CSF-B barriers. The presence of Aβ was detected within the CP blood vessels and in the basement membrane of the CP epithelium. In numerous cytoplasmic vacuoles of CP epithelial and ependymal cells Aβ protein was found and our observations suggest that the contents of those vacuoles were undergoing progressive digestion. The results demonstrated that CP epithelium and ependymal cells, equipped with RAGE receptors, not only play an important role in the creation of amyloid deposits in the brain but are also places where Aβ may be utilized. The RAGE transportation system should be a main target in the therapy of brain amyloidosis, a well-known risk factor of Alzheimer disease.

PMID:
22212919
[PubMed - in process]
Click here to read
8.
Curr Pharm Des. 2012 Jan 1. [Epub ahead of print]

Resveratrol, a neuroprotective supplement for Alzheimer's disease.

Source

School of Traditional Chinese Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. feili@northwestern.edu.

Abstract

The polyphenolic compound resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring phytochemical which has been found in more than 70 plant species, including herbs and human food products such as grapes, berries, and peanuts. Resveratrol was first isolated in 1940; however, little attention was paid to it until its benefits in coronary heart disease were studied in 1992. Since then, increasing evidence has indicated that resveratrol may be useful in treating cardiovascular diseases, cancers, pain, inflammation, tissue injury, and in reducing the risk of neurodegenerative disorders, especially Alzheimer's disease (AD). AD is characterized by a progressive dementia, and is one of the most common neurodegenerative disorders in the elderly. It has been reported that resveratrol exhibits neuroprotective benefits in animal models of AD. Resveratrol promotes the non-amyloidogenic cleavage of the amyloid precursor protein, enhances clearance of amyloid beta-peptides, and reduces neuronal damage. Despite the effort spent trying to understand the mechanisms by which resveratrol functions, the research work in this field is still incomplete. Many concerns such as bioavailability, biotransformation, synergism with other dietary factors, and risks inherent to its possible pro-oxidant activities still need to be addressed. This review summarizes and discusses the neuroprotective effects of resveratrol on AD, and their potential mechanisms.

PMID:
22211686
[PubMed - as supplied by publisher]
9.
J Nutr Biochem. 2011 Dec 29. [Epub ahead of print]

Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloidprecursor protein (APP).

Source

Deutsches Institut für DemenzPrävention (DIDP), Neurodegeneration and Neurobiology, 66421 Homburg, Germany.

Abstract

Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22209004
[PubMed - as supplied by publisher]
Click here to read
10.
Mol Pharm. 2011 Dec 29. [Epub ahead of print]

Phosphorus Dendrimers Affect Alzheimer's (Aβ1-28) Peptide and MAP-Tau Protein Aggregation.

Abstract

Alzheimer's disease (AD) is characterized by pathological aggregation of β-amyloid peptides and MAP-Tau protein. β-amyloid (Aβ) is a peptide responsible for extracellular Alzheimer's plaque formation. Intracellular MAP-Tau aggregates appear as a result of hyperphosphorylation of this cytoskeletal protein. Small, oligomeric forms of Aβ are intermediate products that appear before the amyloid plaques are formed. These forms are believed to be most neurotoxic. Dendrimers are highly branched polymers, which may find an application in regulation of amyloid fibril formation. Several biophysical and biochemical methods, like circular dichroism (CD), fluorescence intensity of thioflavin T and thioflavin S, transmission electron microscopy, spectrofluorimetry (measuring quenching of intrinsic peptide fluorescence) and MTT-cytotoxicity assay, were applied to characterize interactions of cationic phosphorus-containing dendrimers of generation 3 and generation 4 (CPDG3, CPDG4) with the fragment of amyloid peptide (Aβ1-28) and MAP-Tau protein. We have demonstrated that CPDs are able to affect β-amyloid and MAP-Tau aggregation processes. A neuro-2a cell line (N2a) was used to test cytotoxicity of formed fibrils and intermediate products during the Aβ1-28 aggregation. It has been shown that CPDs might have a beneficial effect by reducing the system toxicity. Presented results suggest that phosphorus dendrimers may be used in the future as agents regulating the fibrilization processes in Alzheimer's disease.

PMID:
22206488
[PubMed - as supplied by publisher]
Click here to read
11.
Neurodegener Dis. 2011 Dec 23. [Epub ahead of print]

p53, a Pivotal Effector of a Functional Cross-Talk Linking Presenilins and Pen-2.

Source

Institut de Pharmacologie Moléculaire et Cellulaire et Institut de NeuroMédecine Moléculaire, Equipe Labellisée Fondation pour la Recherche Médicale, Valbonne, France.

Abstract

The γ-secretase is a multiprotein complex responsible for the ultimate cut yielding amyloidpeptides and their N-terminal truncated species. This complex is composed of at least four distinct entities, namely presenilin-1 (PS1) or PS2, anterior pharynx defective-1, presenilin enhancer-2 (Pen-2) and nicastrin. Very few studies examined the transcriptional regulation of this complex, and more precisely, whether some of the members functionally interact. Here, we summarize our previous data documenting the fact that Pen-2 controls cell death in a p53-dependent manner and our recent demonstration of a pivotal role of p53 as a regulator of Pen-2 transcription. As PS trigger amyloid precursor protein intracellular domain-dependent regulation of p53, our studies delineate a feedback control mechanism by which PS and Pen-2 functionally interact in a p53-dependent manner.

Copyright © 2011 S. Karger AG, Basel.

PMID:
22205087
[PubMed - as supplied by publisher]
Click here to read
12.
J Alzheimers Dis. 2011 Dec 27. [Epub ahead of print]

Fibrillar Amyloid-β1-42 Modifies Actin Organization Affecting the Cofilin Phosphorylation State: A Role for Rac1/cdc42 Effector Proteins and the Slingshot Phosphatase.

Source

Laboratory of Cellular and Molecular Neurosciences, University of Chile and International Center for Biomedicine (ICC), Santiago, Chile.

Abstract

The neuronal cytoskeleton regulates numerous processes that occur in normal homeostasis. Under pathological conditions such as those of Alzheimer's disease (AD), major alterations in cytoskeleton organization have been observed and changes in both microtubules and actin filaments have been reported. Many neurodegenerative consequences of AD are linked to the production and accumulation of amyloid peptides (Aβ) and their oligomers, produced from the internal cleavage of the amyloid-β protein precursor. We previously reported that fibrillar Aβ1-42 (fAβ) treatment of hippocampal neurons induced an increase in Rac1 and Cdc42 activities linking fAβ effects with changes in actin dynamics. Here we show fAβ-induces increased activity of PAK1 and cyclin-dependent kinase 5, and that p21-activated kinase (PAK1) activation targets the LIMK1-cofilin signaling pathway. Increased cofilin dephosphorylation under conditions of enhanced LIM-Kinase 1 (LIMK1) activity suggests that fAβ co-stimulates bifurcating pathways impacting cofilin phosphorylation. Overexpression of slingshot (SSH) prevents the augment of F-actin induced by fAβ after 24 h, suggesting that fAβ-induced changes in actin assembly involve both LIMK1 and SSH. These results suggest that fAb may alter the PAK1/LIMK1/cofilin axis and therefore actin organization in AD.

PMID:
22204905
[PubMed - as supplied by publisher]
Click here to read
13.
J Mol Biol. 2011 Dec 19. [Epub ahead of print]

The Effect of Amyloidogenic Peptides on Bacterial Aging Correlates with Their Intrinsic Aggregation Propensity.

Source

Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Abstract

The formation of aggregates by misfolded proteins is thought to be inherently toxic, affecting cell fitness. This observation has led to the suggestion that selection against protein aggregation might be a major constraint on protein evolution. The precise fitness cost associated with protein aggregation has been traditionally difficult to evaluate. Moreover, it is not known if the detrimental effect of aggregates on cell physiology is generic or depends on the specific structural features of the protein deposit. In bacteria, the accumulation of intracellular protein aggregates reduces cell reproductive ability, promoting cellular aging. Here, we exploit the cell division defects promoted by the intracellular aggregation of Alzheimer's-disease-related amyloid β peptide in bacteria to demonstrate that the fitness cost associated with protein misfolding and aggregation is connected to the protein sequence, which controls both the in vivo aggregation rates and the conformational properties of the aggregates. We also show that the deleterious impact of protein aggregation on bacterial division can be buffered by molecular chaperones, likely broadening the sequential space on which natural selection can act. Overall, the results in the present work have potential implications for the evolution of proteins and provide a robust system to experimentally model and quantify the impact of protein aggregation on cell fitness.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
22200483
[PubMed - as supplied by publisher]
Click here to read
14.
J Mol Biol. 2011 Dec 16. [Epub ahead of print]

Noncore Residues Influence the Kinetics of Functional TTR(105-)(115)-BasedAmyloid Fibril Assembly.

Source

Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville VIC 3010, Australia.

Abstract

Mutations in the polypeptide sequence that forms the core structure of amyloid fibrils are known to impact on fibril assembly and stability but the effect of changes on noncore residues, particularly relating to functionalized fibrils where the fibril core is preserved, has not been systematically examined. In this study, the short peptide sequence TTR(105-115) (also known as TTR1) and the functionalized variants TTR1-RGD and TTR1-RAD are used as a model system to investigate the effect of noncore residues on the kinetics of fibril assembly. The noncore residues in TTR1-RGD and TTR1-RAD influence the rate of fibril assembly in non-seeded samples with the glycine residue at position 15 increasing the rate of aggregation compared to alanine. Mature TTR1-RGD fibrils were also found to fragment more readily, indicating possible differences in mechanical properties. Fragments of each type of fibril are capable of self- and cross-seeding, generating fibrils with a highly similar cross-β core structure. The similar rates of assembly observed for self-seeded samples reflect the similar free energy of elongation calculated for these peptides, while the morphology of cross-seeded fibrils is determined by the properties of the monomeric peptide and its macromolecular arrangement within the protofilaments and fibrils. These findings illustrate that noncore residues impact on fibril formation and fibril properties and demonstrate that the influence of noncore residues should be considered when designing sequences for the production of self-assembling functional fibrillar materials.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
22198409
[PubMed - as supplied by publisher]
Click here to read
15.
J Mol Biol. 2011 Dec 13. [Epub ahead of print]

Structural Basis of C-terminal β-Amyloid Peptide Binding by the Antibody Ponezumab for the Treatment of Alzheimer's Disease.

Source

Rinat, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA.

Abstract

Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of ponezumab appears to be available for binding soluble Aβ present in the circulation because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.

Copyright © 2011 Elsevier Ltd. All rights reserved.

PMID:
22197375
[PubMed - as supplied by publisher]
Click here to read
16.
PLoS One. 2011;6(12):e28263. Epub 2011 Dec 14.

Hypoxia Due to Cardiac Arrest Induces a Time-Dependent Increase in SerumAmyloid β Levels in Humans.

Source

Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Abstract

Amyloid β (Aβ) peptides are proteolytic products from amyloid precursor protein (APP) and are thought to play a role in Alzheimer disease (AD) pathogenesis. While much is known about molecular mechanisms underlying cerebral Aβ accumulation in familial AD, less is known about the cause(s) of brain amyloidosis in sporadic disease. Animal and postmortem studies suggest that Aβ secretion can be up-regulated in response to hypoxia. We employed a new technology (Single Molecule Arrays, SiMoA) capable of ultrasensitive protein measurements and developed a novel assay to look for changes in serum Aβ42 concentration in 25 resuscitated patients with severe hypoxia due to cardiac arrest. After a lag period of 10 or more hours, very clear serum Aβ42 elevations were observed in all patients. Elevations ranged from approximately 80% to over 70-fold, with most elevations in the range of 3-10-fold (average approximately 7-fold). The magnitude of the increase correlated with clinical outcome. These data provide the first direct evidence in living humans that ischemia acutely increases Aβ levels in blood. The results point to the possibility that hypoxia may play a role in the amyloidogenic process of AD.

PMID:
22194817
[PubMed - in process]
PMCID: PMC3237426
Free PMC Article
Click here to readClick here to read
17.
Drugs. 2012 Jan 1;72(1):49-66. doi: 10.2165/11597760-000000000-00000.

Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer's disease.

Source

Departments of Pathology, Neurosurgery, Neurology, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA.

Abstract

Alzheimer's disease (AD) is the most common cause of dementia in North America. Growing evidence supports the concept that AD is fundamentally a metabolic disease that results in progressive impairment in the brain's capacity to utilize glucose and respond to insulin and insulin-like growth factor (IGF) stimulation. Moreover, the heterogeneous nature of AD is only partly explained by the brain's propensity to accumulate aberrantly processed, misfolded and aggregated oligomeric structural proteins, including amyloidpeptides and hyperphosphorylated tau. Evidence suggests that other factors, including impaired energy metabolism, oxidative stress, neuroinflammation, insulin and IGF resistance, and insulin/IGF deficiency in the brain should be incorporated into an overarching hypothesis to develop more realistic diagnostic and therapeutic approaches to AD. In this review, the interrelationship between impaired insulin and IGF signalling and amyloid-β pathology is discussed along with potential therapeutic approaches. Impairments in brain insulin/IGF signalling lead to increased expression of amyloid-β precursor protein (AβPP) and accumulation of AβPP-Aβ. In addition, they promote oxidative stress and deficits in energy metabolism, leading to the activation of pro-AβPP-Aβ-mediated neurodegeneration cascades. Although brain insulin/IGF resistance and deficiency can be induced by primary or secondary disease processes, the soaring rates of peripheral insulin resistance associated with obesity, diabetes mellitus and metabolic syndrome quite likely play major roles in the current AD epidemic. Both clinical and experimental data have linked chronic hyperinsulinaemia to cognitive impairment and neurodegeneration with increased AβPP-Aβ accumulation/reduced clearance in the CNS. Correspondingly, both the restoration of insulin responsiveness and the use of insulin therapy can lead to improved cognitive performance, although with variable effects on brain AβPP-Aβ load. On the other hand, experimental evidence supports the concept that the toxic effects of AβPP-Aβ can promote insulin resistance. Together, these findings suggest that a positive feedback loop of progressive neurodegeneration can develop whereby insulin resistance drives AβPP-Aβ accumulation, and AβPP-Aβ fibril toxicity drives brain insulin resistance. This phenomenon could explain why measuring AβPP-Aβ levels in cerebrospinal fluid or imaging of the brain has proven to be inadequate as a stand-alone biomarker for diagnosing AD, and why the clinical trial results of anti-AβPP-Aβ monotherapy have been disappointing. Instead, the aggregate data suggest that brain insulin resistance and deficiency must also be therapeutically targeted to halt AD progression or reverse its natural course. The positive therapeutic effects of different treatments that address the role of brain insulin/IGF resistance and deficiency, including the use of intranasal insulin delivery, incretins and insulin sensitizer agents are discussed along with potential benefits of lifestyle changes to modify risk for developing mild cognitive impairment or AD. Altogether, the data strongly support the notion that we must shift toward the implementation of multimodal rather than unimodal diagnostic and therapeutic strategies for AD.

PMID:
22191795
[PubMed - in process]
Click here to read
18.
Chemistry. 2011 Dec 21. doi: 10.1002/chem.201102746. [Epub ahead of print]

Reevaluation of Copper(I) Affinity for AmyloidPeptides by Competition with Ferrozine-An Unusual Copper(I) Indicator.

Source

CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077 Toulouse, (France); Université de Toulouse, UPS, INPT, LCC, 31077 Toulouse (France), Fax: (+33) 5-61-55-30-03.

Abstract

The association constant of ferrozine (5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine-4,4''-disulfonic acid) with Cu(I) to form the chromophoric [Cu(I) (Fz)(2) ](3-) complex was determined by UV/Vis titration experiments in Hepes buffer (0.1 m, pH 7.4). An association constant close to 10(12)  M(-2) , which is significantly weaker than those of the well-known, water-soluble, Cu(I) chelators bicinchoninic acid and 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline disulfonic acid, was found. The [Cu(I) (Fz)(2) ](3-) chromophore was used in UV/Vis competition experiments to determine Cu(I) binding affinity for the amyloid-β peptide involved in Alzheimer's disease and for a series of pertinent mutants. An association constant of approximately 10(7)  M(-1) was found; this is much weaker than that reported for dithiothreitol and confirms that imidazoles are harder ligands than thiolates. Each His mutation (H6A, H13A, and H14A) impacts the peptide affinity for Cu(I) . The native human amyloid-β peptide was found to be a fourfold-stronger Cu(I) ligand than the murine peptide, which differs by three point mutations (R5G, Y10F, and H13R) from the human one.

Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

PMID:
22189983
[PubMed - as supplied by publisher]
Click here to read
19.
J Biol Chem. 2011 Dec 19. [Epub ahead of print]

Propyl isomerase Pin1 promotes APP protein turnover by inhibiting GSK3β kinase activity: A novel mechanism for Pin1 to protect against Alzheimer's disease.

Source

Beth Israel Deaconese Medical Center, United States;

Abstract

Alzheimer's disease (AD) is characterized by the presence of senile plaques of amyloid-beta peptides (Aβ) derived fromamyloid precursor protein (APP) and neurofibrillary tangles composed of hyperphosphorylated tau. Increasing APP gene dosage or expression has been shown to cause familial early-onset AD. However, whether protein stability of APP is regulated is unclear. The prolyl isomerase Pin1 and glycogen synthase 3β (GSK3β) have been shown to have the opposite effects on APP processing and tau hyperphosphorylation, relevant to the pathogenesis of AD. However, nothing is known about their relationship. In this study, we found that Pin1 binds to the pT330-P motif in GSK3β to inhibit its kinase activity. Furthermore, Pin1 promotes protein turnover of APP by inhibiting GSK3β activity. A point mutation either at T330, the Pin1-binding site in GSK3β, or T668, the GSK3β phosphorylation site in APP, abolished the regulation of GSK3β activity, T668 phosphorylation and APP stability by Pin1, resulting in reduced non-amyloidogenic APP processing and increased APP levels. These results uncover a novel role of Pin1 in inhibiting GSK3β kinase activity to reduce APP protein levels, providing a previously unrecognized mechanism by which Pin1 protects against Alzheimer's disease.

PMID:
22184106
[PubMed - as supplied by publisher]
Free full text
Click here to read
20.
Chem Phys Lipids. 2011 Dec 9. [Epub ahead of print]

Differing modes of interaction between monomeric Aβ(1-40) peptides and model lipid membranes: an AFM study.

Source

Nanoscale Function Group, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

Abstract

Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content.

No comments:

Post a Comment