Thursday, September 8, 2011

Amyloid Beta Oligomer~ Current Research TOP 15 Publications on Amyloid Beta Oligomer~ Tau Proteins Blog

Amyloid Beta Oligomer~ Current Research TOP 15 Publications on Amyloid Beta Oligomer~ Tau Proteins Blog

Neurobiol Aging. 2011 Jun 15. [Epub ahead of print]
Source
Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Abstract
In this study, we examined the relationship between various β-amyloid (Aβ) oligomer assemblies in autopsy brain with the levels of fibrillar Aβ and cholinergic synaptic function. Brain tissues obtained from the frontal cortex of 14 Alzheimer's disease (AD) patients grouped into early-onset AD (EOAD) and late-onset AD (LOAD) and 12 age-matched control subjects were used to extract and quantify Aβ oligomers in soluble (TBS), detergent soluble (TBST), and insoluble (GuHCl) fractions. The predominant oligomeric Aβ assemblies detected were dodecamers, decamers, and pentamers, and different patterns of expression were observed between EOAD and LOAD patients. There was no association between any of the detected Aβ oligomer assemblies and fibrillar Aβ levels measured by N-methyl[(3)H] 2-(40-methylaminophenyl)-6-hydroxy-benzothiazole ([(3)H]PIB) binding. Levels of pentamers in the soluble fraction significantly correlated with a reduction in choline acetyltransferase activity in AD patients. The number of nicotinic acetylcholine receptors negatively correlated with the total amount of Aβ oligomers in the insoluble fraction in EOAD patients, and with decamers in the soluble fraction in LOAD patients. These novel findings suggest that distinct Aβ oligomers induce impairment of cholinergic neurotransmission in AD pathogenesis.
Copyright © 2011 Elsevier Inc. All rights reserved.
J Mol Model. 2011 Jun 15. [Epub ahead of print]
Source
NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.
Abstract
Insulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations. Several modifications to the C-terminus of the B chain have been suggested in order to improve the insulin formulation. The central fragments of the A and B chains (LYQLENY and LVEALYL) have recently been identified as β-sheet-forming regions, and their microcrystalline structures have been used to build a high-resolution amyloid fibril model of insulin. Here we report on a molecular dynamics (MD) study of single-layer oligomers of the full-length insulin which aimed to identify the structural elements that are important for amyloid stability, and to suggest single glycine mutants in the β-sheet region that may improve the formulation. Structural stability, aggregation behavior and the thermodynamics of association were studied for the wild-type and mutant aggregates. A comparison of the oligomers of different sizes revealed that adding strands enhances the internal stability of the wild-type aggregates. We call this "dynamic cooperativity". The secondary structure content and clustering analysis of the MD trajectories show that the largest aggregates retain the fibril conformation, while the monomers and dimers lose their conformations. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as a possible explanation for the experimentally observed shortening of the nucleation lag phase of insulin with oligomer seeding. Decomposing the free energy into electrostatic, van der Waals and solvation components demonstrated that electrostatic interactions contribute unfavorably to the binding, while the van der Waals and especially solvation effects are favorable for it. A per-atom decomposition allowed us to identify the residues that contribute most to the binding free energy. Residues in the β-sheet regions of chains A and B were found to be the key residues as they provided the largest favorable contributions to single-layer association. The positive ∆∆G (mut) values of 37.3 to 1.4 kcal mol(-1) of the mutants in the β-sheet region indicate that they have a lower tendency to aggregate than the wild type. The information obtained by identifying the parts of insulin molecules that are crucial to aggregate formation and stability can be used to design new analogs that can better control the blood glucose level. The results of our simulation may help in the rational design of new insulin analogs with a decreased propensity for self-association, thus avoiding injection amyloidosis. They may also be used to design new fast-acting and delayed-release insulin formulations.
Biophys J. 2011 May 4;100(9):2302-8.
Source
NMR Facility and Biomedical Engineering Graduate Group, University of California, Davis, California, USA.
Abstract
Formation of amyloid oligomers, the most toxic species of amyloids in degenerative diseases, is critically coupled to the interplay with surrounding water. The hydrophobic force driving the oligomerization causes water removal from interfaces, changing the surface-hydration properties. Here, we show that such effects alter the magnetic relaxation response of local water in ways that may enable oligomer detection. By using water proton magnetic resonance spectroscopy, we measured significantly longer transverse magnetic relaxation (T(2)) times in mixtures of serum and amyloidogenic Aβ(1-42) peptides versus similar concentration solutions of serum and nonamyloidogenic scrambled Aβ(42-1) peptides. Immunochemistry with oligomer-specific antibodies, electron microscopy and computer simulations demonstrated that the hyperintense magnetic signal correlates with Aβ(1-42) oligomerization. Finding early biophysical markers of the oligomerization process is crucial for guiding the development of new noninvasive imaging techniques, enabling timely diagnosis of amyloid-related diseases and pharmacological intervention.
Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Int J Alzheimers Dis. 2011 Feb 8;2011:906964.
Source
Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
Abstract
Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them-most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)-a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin.
Exp Neurol. 2011 Apr;228(2):298-302. Epub 2011 Jan 31.
Source
Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8640, Japan.
Abstract
The folding of amyloid β-protein (Aβ) into oligomeric, protofibrillar, and fibrillar assemblies is hypothesized to be the key pathogenic event in Alzheimer's disease (AD), with oligomeric assemblies thought to be the most neurotoxic. Inhibitors of oligomer formation, therefore, could be valuable therapeutics for patients with AD. Epidemiological studies have indicated that estrogen therapy reduces the risk of developing AD in women. Here, we examined the effects of estrogen (estrone (E1), estradiol (E2), and estriol (E3)) and related sexual steroids (androstenedione (AND) and testosterone (TES)) on the in vitro oligomer formation of Aβ(1-40) and Aβ(1-42) using a method of photo-induced cross-linking of unmodified proteins (PICUP) and electron microscopic studies. Estrogens (E1, E2, and E3) inhibited low-order Aβ oligomer formation, and among them, E3 had the strongest in vitro activity. Estrogen could be a potential therapeutic agent to prevent or delay AD progression, and further understanding of the fact that these very similar molecules have different anti-oligomeric effects would contribute to the development of new agents.
Regul Pept. 2010 Aug 9;163(1-3):1-6. Epub 2010 May 15.
Source
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, PR China.
Abstract
Amyloid-beta (Abeta) aggregation and Cu(II)-related oxidative stress are involved in the dysfunction and death of neurons in Alzheimer's disease (AD). However, the relationship between Abeta and Cu(II) is not clear. Furthermore, the pro- or anti-oxidant properties of Abeta are also under great debate. Here the H2O2 generating ability of Abeta42 in its monomeric, oligomeric and fibrillar forms was studied in the presence of Cu(II). The results show that Abeta42 in both oligomeric and fibrillar forms can promote H2O2 generation at lower concentrations of Cu(II) and Abeta42 oligomer can promote H2O2 generation to a higher extent. Nevertheless, the promoting effect of Abeta42 oligomer and fibril may convert to an inhibitory effect when the concentration of Cu(II) is increased. This indicates the dual functions of Abeta42 oligomer and fibril in Cu(II)-induced H2O2 production. Hereby we present a new perspective on the roles of Abeta42 in Cu(II)-mediated oxidative stress and add new evidence to the viewpoint that Abeta42 oligomer may be primarily responsible for the pathogenesis of AD.
Copyright (c) 2010 Elsevier B.V. All rights reserved.
J Neurosci. 2010 Feb 17;30(7):2442-53.
Source
Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555, USA.
Abstract
Early Alzheimer's disease (AD) is marked by cholinergic hypofunction, neuronal marker loss, and decreased nicotinic acetylcholine receptor (nAChR) density from the cortex and hippocampus. alpha7 nAChRs expressed on cholinergic projection neurons and target regions have been implicated in neuroprotection against beta-amyloid (Abeta) toxicity and maintenance of the septohippocampal phenotype. We tested the role that alpha7 nAChRs perform in the etiology of early AD by genetically deleting the alpha7 nAChR subunit from the Tg2576 mouse model for AD and assessing animals for cognitive function and septohippocampal integrity. Thus, Tg2576 mice transgenic for mutant human amyloid precursor protein (APP) were crossed with alpha7 nAChR knock-out mice (A7KO) to render an animal with elevated Abeta in the absence of alpha7 nAChRs (A7KO-APP). We found that learning and memory deficits seen in 5-month-old APP mice are more severe in the A7KO-APP animals. Analyses of animals in early-stage preplaque cognitive decline revealed signs of neurodegeneration in A7KO-APP hippocampus as well as loss of cholinergic functionality in the basal forebrain and hippocampus. These changes occurred concomitant with the appearance of a dodecameric oligomer of Abeta that was absent from all other genotypic groups, generating the hypothesis that increased soluble oligomeric Abeta may underlie additional impairment of A7KO-APP cognitive function. Thus, alpha7 nAChRs in a mouse model for early-stage AD appear to serve a neuroprotective role through maintenance of the septohippocampal cholinergic phenotype and preservation of hippocampal integrity possibly through influences on Abeta accumulation and oligomerization.
Biochim Biophys Acta. 2010 Apr;1802(4):406-15. Epub 2010 Jan 12.
Source
Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy. fiorella.malchiodi@iss.it
Abstract
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.
Copyright 2009 Elsevier B.V. All rights reserved.
Anal Bioanal Chem. 2009 Dec;395(8):2509-19. Epub 2009 Oct 17.
Source
Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany.
Abstract
Formation and accumulation of fibrillar plaques and aggregates of beta-amyloid peptide (Abeta) in brain have been recognized as characteristics of Alzheimer's disease (AD). Oligomeric aggregates of Ass are considered critical intermediates leading to progressive neurodegeneration; however, molecular details of the oligomerization and aggregation pathway and the structures of Abeta-oligomers are hitherto unclear. Using an in vitro fibril formation procedure of Abeta(1-40), beta-amyloid aggregates were prepared and insoluble aggregates separated from soluble products by centrifugation. In this study, ion mobility mass spectrometry (IM-MS) was applied in combination with electron paramagnetic resonance spectroscopy (EPR) to the identification of the components of Abeta-oligomers, and to their structural and topographical characterization. The formation of Abeta-oligomers and aggregates was monitored by gel electrophoresis, and Abeta-oligomer bands were identified by in-gel tryptic digestion and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) to consist predominantly of Abeta(1-40) peptide. First, ion mobility-MS studies of soluble Abeta-aggregates prepared by incubation for 5 days were performed on a quadrupole time-of-flight mass spectrometer and revealed (1) the presence of at least two different conformational states, and (2), the formation of Met-35 oxidized products. For estimation of the size of Abeta-aggregates using EPR spectroscopy, a modified Abeta(1-40) peptide containing an additional N-terminal cysteine residue was prepared, and a 3-(2-iodoacetamido)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical spin label derivative (IPSL) was coupled by S-alkylation. The EPR spectra of the spin-labeled Cys-Abeta(1-40) oligomers were matched with spectra simulations using a multi-component simulation strategy, resulting in complete agreement with the gel electrophoresis results.
J Biol Chem. 2009 Feb 13;284(7):4230-7. Epub 2008 Dec 18.
Source
Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
Abstract
Amyloid oligomers are believed to play causal roles in several types of amyloid-related neurodegenerative diseases. Several different types of amyloid oligomers have been reported that differ in morphology, size, or toxicity, raising the question of the pathological significance and structural relationships between different amyloid oligomers. Annular protofibrils (APFs) have been described in oligomer preparations of many different amyloidogenic proteins and peptides as ring-shaped or pore-like structures. They are interesting because their pore-like morphology is consistent with numerous reports of membrane-permeabilizing activity of amyloid oligomers. Here we report the preparation of relatively homogeneous preparations of APFs and an antiserum selective for APFs (alphaAPF) compared with prefibrillar oligomers (PFOs) and fibrils. PFOs appear to be precursors for APF formation, which form in high yield after exposure to a hydrophobic-hydrophilic interface. Surprisingly, preformed APFs do not permeabilize lipid bilayers, unlike the precursor PFOs. APFs display a conformation-dependent, generic epitope that is distinct from that of PFOs and amyloid fibrils. Incubation of PFOs with phospholipids vesicles results in a loss of PFO immunoreactivity with a corresponding increase in alphaAPF immunoreactivity, suggesting that lipid vesicles catalyze the conversion of PFOs into APFs. The annular anti-protofibril antibody also recognizes heptameric alpha-hemolysin pores, but not monomers, suggesting that the antibody recognizes an epitope that is specific for a beta barrel structural motif.
PLoS One. 2008 Sep 18;3(9):e3235.
Source
Laboratory for Alzheimer's Disease, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
Abstract
Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is calledamyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomerconformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on these targets. Since the beta-sheet edge was a common structural motif having the most similar physicochemical properties in the A11-reactive proteins we analyzed, we propose that the beta-sheet edge in some natively folded amyloid oligomers is designed positively to prevent beta aggregation.
J Biol Chem. 2007 Jan 5;282(1):555-63. Epub 2006 Nov 8.
Source
Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan. asanbe@nch.go.jp
Abstract
An R120G missense mutation in alpha-B-crystallin (CryAB), a small heat-shock protein (HSP), causes a desmin-related cardiomyopathy (DRM) that is characterized by the formation of aggregates containing CryAB and desmin. The mutant CryAB protein leads to the formation of inclusion bodies, which contain amyloid oligomer intermediates (amyloid oligomer) in the cardiomyocytes. To further address the underlying mechanism(s) of amyloid oligomer formation in DRM linked to the CryAB R120G, a recombinant CryAB R120G protein was generated. The purified CryAB R120G protein can form a toxic amyloid oligomer, whereas little immunoreactivity was observed in the wild-type CryAB protein. A native PAGE showed that the oligomerized form was present in the CryAB R120G protein, whereas only a high molecular mass was detected in the wildtype CryAB. The oligomerized CryAB R120G of around 240-480 kDa showed strong positive immunoreactivity against an anti-oligomer antibody. The CryAB R120G amyloid oligomer was unstable and easily lost its conformation by beta-mercaptoethanol and SDS. Recombinant HSP25 or HSP22 proteins can directly interrupt oligomer formation by the CryAB R120G protein, whereas the amyloid oligomer is still present in the mixture of the wild-type CryAB and CryAB R120G proteins. This interruption by HSP25 and HSP22 was confirmed in a cardiomyocyte-based study using an adenoviral transfection system. Blockade of amyloid oligomerformation by HSP25 and HSP22 recovered the ubiquitin proteosomal activity and cellular viability. Blockade of oligomer formation by small HSP may be a new therapeutic strategy for treating DRM as well as other types of amyloid-based degenerative diseases.
Methods Enzymol. 2006;413:326-44.
Source
UC Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA, USA.
Abstract
Although abundant evidence suggests that amyloid accumulation plays a significant role in the pathogenesis of degenerative disease, the mechanism of amyloid formation and toxicity remains elusive. Early hypotheses for disease pathogenesis proposed that large amyloid deposits, which are composed primarily of 6-10-nm mature amyloid fibrils, were the primary causative agent in pathogenesis, but this hypothesis required modification to consider the central role of oligomers or aggregation intermediates, because the accumulation of these large aggregates does not correlate well with pathogenesis. Recent evidence supports the hypothesis that small soluble aggregates representing intermediates in the fibril assembly process may represent the primary culprits in a variety of amyloid-related degenerative diseases. Investigating the role of soluble amyloid oligomers in pathogenesis presents a problem for distinguishing these aggregates from the mature fibrils, soluble monomer, and natively folded precursor proteins, especially in vivo and in complex mixtures. Recently, we generated a conformation-specific antibody that recognizes soluble oligomers from many types of amyloid proteins, regardless of sequence. These results indicate that soluble oligomers have a common, generic structure that is distinct from both fibrils and low-molecular-weight soluble monomer/dimer. Conformation-dependent, oligomer-specific antibodies represent powerful tools for understanding the role of oligomers in pathogenesis. The purpose of this chapter is to review the methods for the production, characterization, and application of this antibody to understanding the contribution of amyloid oligomers to the disease process.
Neurobiol Aging. 2006 Apr;27(4):570-5. Epub 2006 Feb 14.
Source
Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA. cglabe@uci.edu
Abstract
Many age-related degenerative diseases, including Alzheimer's, Parkinson's, Huntington's diseases and type II diabetes, are associated with the accumulation of amyloid fibrils. The protein components of these amyloids vary widely and the mechanisms of pathogenesis remain an important subject of competing hypotheses and debate. Many different mechanisms have been postulated as significant causal events in pathogenesis, so understanding which events are primary and their causal relationships is critical for the development of more effective therapeutic agents that target the underlying disease mechanisms. Recent evidence indicates that amyloids share common structural properties that are largely determined by their generic polymer properties and that soluble amyloid oligomers may represent the primary pathogenic structure, rather than the mature amyloid fibrils. Since protein function is determined by the three-dimensional structure, the fact that amyloids share generic structures implies that they may also share a common pathological function. Amyloid oligomers from several different proteins share the ability to permeabilize cellular membranes and lipid bilayers, indicating that this may represent the primary toxic mechanism of amyloid pathogenesis. This suggests that membrane permeabilization may initiate a core sequence of common pathological events leading to cell dysfunction and death that is shared among degenerative diseases, whereas pathological events that are unique to one particular type of amyloid or disease may lie in up stream pathways leading to protein mis-folding. Although, these upstream events may be unique to a particular disease related protein, their effects can be rationalized as having a primary effect of increasing the amount of mis-folded, potentially amyloidogenic proteins.